Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Free, publicly-accessible full text available June 3, 2026
- 
            Free, publicly-accessible full text available June 13, 2026
- 
            Adipocyte differentiation plays an important role in bone remodeling due to secretory factors that can directly modulate osteoblast and osteoclast, thus affecting overall bone mass and skeletal integrity. Excessive adipocyte differentiation within the bone marrow microenvironment can lead to decreased bone mass, eventually causing osteoporosis. The mechanical microenvironment of bone marrow, including fluid shear, maintains the balance of adipocyte and osteoblast differentiation during bone remodeling. However, how mechanical cues interact with long noncoding RNA (lncRNA) and regulate adipocyte differentiation remains unexplored. In this study, we investigated the mechanosensitive role of lncRNA MALAT1 during mesenchymal stem cells (MSCs) adipocyte differentiation. By applying physiologically relevant shear stress, MSCs experienced morphological changes and adipocyte differentiation differences. Shear stress inhibits adipocyte differentiation of MSCs, demonstrated by reduced oil-red-o-stained lipid droplets. Silencing MALAT1 also results in reduced adipocyte differentiation. By leveraging a novel gapmer double stranded locked nuclei acid nanobiosensor, we showed that shear stress inhibits MALAT1 expression, with significantly reduced fluorescence intensity. Our findings indicate that shear stress influences adipocyte differentiation mainly through the downregulation of MALAT1, highlighting a significant interplay between biophysical cues and lncRNAs. This interaction is crucial for understanding the complexities of bone remodeling and the potential therapeutic targeting of lncRNAs to treat bone-related disorders.more » « lessFree, publicly-accessible full text available May 6, 2026
- 
            Free, publicly-accessible full text available July 1, 2026
- 
            Free, publicly-accessible full text available December 1, 2025
- 
            Free, publicly-accessible full text available November 15, 2025
- 
            Free, publicly-accessible full text available December 31, 2025
- 
            Chronic wounds are a major health problem because of delayed healing, causing hardships for the patient. The infection present in these wounds plays a role in delayed wound healing. Silver wound dressings have been used for decades, beginning in the 1960s with silver sulfadiazine for infection prevention for burn wounds. Since that time, there has been a large number of commercial silver dressings that have obtained FDA clearance. In this review, we examine the literature involving in vitro and in vivo (both animal and human clinical) studies with commercial silver dressings and attempt to glean the important characteristics of these dressings in treating infected wounds. The primary presentation of the literature is in the form of detailed tables. The narrative part of the review focuses on the different types of silver dressings, including the supporting matrix, the release characteristics of the silver into the surroundings, and their toxicity. Though there are many clinical studies of chronic and burn wounds using silver dressings that we discuss, it is difficult to compare the performances of the dressings directly because of the differences in the study protocols. We conclude that silver dressings can assist in wound healing, although it is difficult to provide general treatment guidelines. From a wound dressing point of view, future studies will need to focus on new delivery systems for silver, as well as the type of matrix in which the silver is deposited. Clearly, adding other actives to enhance the antimicrobial activity, including the disruption of mature biofilms is of interest. From a clinical point of view, the focus needs to be on the wound healing characteristics, and thus randomized control trials will provide more confidence in the results. The application of different wound dressings for specific wounds needs to be clarified, along with the application protocols. It is most likely that no single silver-based dressing can be used for all wounds.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
